
September 2000 The Delphi Magazine 17

Under Construction:
Delphi And Strings
by Bob Swart

In this article, we’ll examine the
different kinds of strings that can

be found in Delphi. From the good
old short strings (which aren’t so
good anymore, as we shall see) to
the long, ANSI and wide strings.
From simple characters to pointer-
to-characters, plus ANSI and wide
characters. There’s a lot going on
behind the scenes to make it work
just fine for the average Delphi pro-
grammer without having to know
these nitty-gritty details.

Sometimes, however, it sure
helps if you know just that little bit
more about the implementation
details of strings. This article will
help you understand them. So,
without further ado, let’s start the
first round with the building blocks
of strings: characters.

Typical Characters
Delphi knows three character
types: Char, AnsiChar and WideChar.
There are actually only two differ-
ent types: AnsiChar and WideChar.
The default Char type is just an alias
for the current recommended
character type, which is AnsiChar
at this time.

AnsiChar gets you an 8-bit ANSI
character, which is indeed the
default under Windows, at least on
my installations of 32-bit Windows
(Win95, Win98, WinNT and Win-
dows 2000).

A WideChar, as you might expect,
is twice as big (wide) compared to
a regular character. In these 16
bits, we can fit a Unicode charac-
ter. A Unicode character consists
of two bytes. The first 256 Unicode
characters map to the basic (ANSI)
character set. Unfortunately, while
Windows NT and Windows 2000
have support for Unicode, Win-
dows 95 does not. I guess that’s the
reason why Delphi’s support for
Unicode (ie WideChar and, as we’ll
see in a moment, WideString) is a
bit limited to say the least.

There are a number of special
character functions that we should
look at already (because I want to
use some of them in a moment),
namely Ord, Chr and UpCase. Ord
returns the ordinal number of the
character, while Chr turns an 8-bit
byte value into a character again.
Note that there is no support for
WideChar here: you have to explic-
itly cast a 16-bit ShortInt to a
WideChar in order to produce one.
Similarly, the built-in UpCase
function only works with ANSI
characters, not with WideChars.

Null Termination
Apart from these single characters,
Delphi also supports pointer-to-
character types (with which you
are probably well acquainted)
such as PChar. And where PChar is a
Pointer-to-Char (the 8-bit AnsiChar
that is), you won’t be surprised by
now to learn that Delphi also sup-
ports the PAnsiChar and PWideChar
types. All PChar types are in fact
null-terminated strings, which
means that they can be any length,
but have to end with a character
that has the hex value 0 (that is,
null). PChars were actually intro-
duced in Turbo Pascal for Win-
dows: they were needed because
almost the entire Windows API
uses these null-terminated strings
(when they need to pass a string,
that is). Null-terminated strings are
also the way in which you can pass
a PChar string from Delphi (Pascal)
to a char* string in C or C++.

The biggest problem (or just
something not to forget) when
using null-terminated strings is the
fact that you need to allocate

memory for them. An exception to
the rule can be made when you
initialise a PChar with a const string
value (for which the compiler then
allocates memory). Another way
to avoid having to manually
allocate and de-allocate memory is
by declaring a zero-based array of
character, which is type-
compatible with PChars (if you
compile with $X+, which is the
default setting).

To give you an example, con-
sider the statements in Listing 1.
After the assignment Y := X; the Y
PChar variable points to the X
zero-based array of characters.
And if we modify Y (or rather: the
array of characters Y points to), we
modify X as well. Not earth shatter-
ing, but just something to keep in
mind, as it can easily lead to some
confusion later in your code (been
there, done that).

Short Strings
A legacy from the 16-bits Turbo
Pascal days (even before null-
terminated strings were sup-
ported), short strings are still
quite popular among Delphi pro-
grammers. A short string is a string
that can contain up to 255 charac-
ters. You can specify the maximum
length when you declare the short
string, for example:

var
NameStr: String[64];

declares a variable NameStr which
is of type String (or ShortString)
with a maximum length of 64 char-
acters. Each character is stored in
a single byte of type Char, and you
can access the individual charac-
ters using NameStr[1] for the first
character to NameStr[64] for the
last character. A reference to
NameStr[65] will lead to a compiler
error. Furthermore, if you compile
using the $R+ compiler directive,

var
X: Array[0..42] of Char;
Y: PChar;

begin
X := 'this is a null-terminated string';
Y := X; { pointer Y points to X now }
Y[0] := 'T';
writeln(X);

➤ Listing 1

18 The Delphi Magazine Issue 61

then a reference to NameStr[i],
with i of type integer, will lead to a
runtime out-of-bounds error if i is
not in the range 0 to 64. Yes, I did
say 0, and the NameStr variable of
type String[64] is actually 65 bytes
long, since the ‘zero-th’ position of
any short string contains the
length of the actual string, stored
in a Byte (which is the main reason
a short string cannot contain more
than 255 characters).

The main advantage of short
strings over null-terminated
strings is speed. It only takes one
quick look (at the zero-th position)
to determine the length of the
short string, while you need to tra-
verse the entire null-terminated
string to determine its length.

However, short strings always
had one big potential problem
(especially in 16-bit days) and that
was stack space. Even today, you
should make sure you use short
strings properly inside recursive
routines, since they are placed on
the stack, which is quite slow and
has a finite limit, even in Win32.

Short CaptionMaker
As an example, consider a routine
that will change the first letter of
each word in a given sentence to
uppercase. Let’s call it Caption-
Maker. The algorithm is simple:
change the first letter to UpCase,
and then change every letter that
follows a space. A real version of
this routine would of course check
for additional characters, not just a
space, such as tabs, carriage
returns, linefeeds, etc.

Listing 2 has five possible imple-
mentations of the CaptionMaker
routine. The first one takes a short
string argument (256 bytes on the
stack), returns a short string
(another 256 bytes) and finally
uses a local short string variable
(the third 256 bytes allocated on
the stack). The second one doesn’t
use a local short string variable,
but modifies the passed string
parameter in place, before return-
ing that result. This saves 256
bytes on the stack compared to
CaptionMaker1. The third edition
passes the input string as a const
parameter, which saves another
256 bytes on the stack.

CaptionMaker4 does not even
return a result, but changes the
input string as a var-argument in
place. This is the most efficient edi-
tion and uses the least stack space.
If you still require a function, then
CaptionMaker5 shows how you can
return a pointer-to-a-string as well.

Timings
Using the old technique of the
RepsTimer (as described by
TurboPower about a decade ago),
I’ve executed all five versions of
CaptionMaker during a 0.1 second
period and counted the number of
calls I could make in this time. A
higher number indicates a faster
performance. The results using
Delphi 5.01 (showing values in K, or
1,000 repetitions) shouldn’t be sur-
prising: the algorithms using the
least amount of stack space were
most efficient; the procedure edi-
tion, using almost no stack space at
all, was almost twice as fast as the
first edition:

1: 52K
2: 65K
3: 74K
4: 95K (most efficient)
5: 83K

Results on your machine may vary.
Note that for the best (undis-
turbed) results, you need to run on
WindowsNT or Windows 2000,
since Win95 and Win98 have prob-
lems shielding one application
from another (which results in a
lot of noise).

We’ll come back to this example
later when we use other kinds of
strings.

Long Strings
A long string, which is also called
AnsiString, is a welcome enhance-
ment to the short strings that have
been available for years. Instead of
being limited to 255 characters,
long strings can contain, in theory,
up to 2 billion characters (actually
2Gb minus 1, but who’s counting),
in practice limited to the amount of
free memory and swap file space
on your machine. I’ve been playing
with some long strings of several
megabytes in size, but only for effi-
ciency demonstration purposes.
One of the best things about long
strings is the fact that they can
change in size: you can start with a
relative small long string, and it
will grow when needed. Note that
this growing of long strings can
take considerable time, as a new
long string must be allocated, the
old information copied, and so on.
Listing 3 has an ultra-slow example
to read a text file that will quickly
(or slowly) demonstrate this.

function CaptionMaker1(Str: ShortString): ShortString;
{ stack: 256 (arg) + 256 (local) + 256 (result) bytes }
var
i: Integer;
Tmp: ShortString;

begin
Tmp := Str; // initial copy
for i:=1 to Length(Str) do
if (i = 1) or (Str[i-1] = #32) then
Tmp[i] := UpCase(Str[i]);

Result := Tmp
end;
function CaptionMaker2(Str: ShortString): ShortString;
{ stack: 256 (arg) + 256 (result) bytes }
var i: Integer;
begin
for i:=1 to Length(Str) do
if (i = 1) or (Str[i-1] = #32) then
Str[i] := UpCase(Str[i]);

Result := Str
end;
function CaptionMaker3(const Str: ShortString): ShortString;
{ stack: 256 (result) bytes }

var i: Integer;
begin
Result := Str; // initial copy
for i:=1 to Length(Str) do
if (i = 1) or (Str[i-1] = #32) then
Result[i] := UpCase(Str[i])

end;
procedure CaptionMaker4(var Str: ShortString);
var i: Integer;
begin
for i:=1 to Length(Str) do
if (i = 1) or (Str[i-1] = #32) then
Str[i] := UpCase(Str[i])

end;
function CaptionMaker5(var Str: ShortString): PShortString;
var i: Integer;
begin
for i:=1 to Length(Str) do
if (i = 1) or (Str[i-1] = #32) then
Str[i] := UpCase(Str[i]);

Result := @Str
end;

➤ Listing 2: CaptionMakers.

20 The Delphi Magazine Issue 61

Apart from going slower with
every next line to read (a file with
twice as many lines will take far
more than twice the time to load
this way), the above algorithm will
also lead to a highly fragmented set
of memory allocations for the long
string, each one a bit bigger than
the previous one. This is not a good
thing, of course.

Reference Counted
Apart from the fact that long
strings can grow in size (when
needed or requested), an impor-
tant feature of them is the fact that
they are reference counted. This
means that if you have two copies
of the same long string, then you
usually only have one actual copy
with a reference counter set to 2.
This sounds nice, and is indeed
nice most of the time, but it can
lead to some unexpected perfor-
mance hits when working with long
strings.

For example if you change a
single character inside a long
string variable, which was actually
a copy of another long string (so
they’re both pointing to the same
long string with a reference count
value of 2), then you need to make a
deep copy of the long string before
you modify it. And that deep copy
takes time: first allocating enough
memory, then actually copying the
string, and so on. In my Delphi Effi-
ciency conference sessions (for
example at the recent BorCon 2000
in San Diego) I always call this the
‘delayed performance hit’ of long
strings.

When you think you are facing
such a situation, then you can
enforce each long string to be
unique by calling the UniqueString
procedure. This makes sure that
the long string passed as an argu-
ment has a reference count of
exactly one. Of course, when you
do this your application may
require more memory, but at least
you won’t be surprised by it.

Long CaptionMaker
Now, let’s see how long strings per-
form when we modify the Caption-
Maker routines to use LongString
instead of ShortStrings. Since a
long string is just a pointer, and

even a long string value argument
will just be a pointer that is being
passed, we should not see the big
differences that we have seen
when using short strings.

The results of our standard test
are as follows, using Delphi 5.01:

1: 25K
2: 34K
3: 36K
4: 71K
5: 41K

Wow, compare that to the short
strings, and you see that long
strings are much slower. But why?
Well, to tell you the truth, the loop
that I’ve been using to measure the
amount of repeats is programmed
as shown in Listing 4.

While this is a perfectly working
loop when testing short strings, we
must remember that long strings
are not only reference counted but
also lifetime-managed. Which
means that whenever a long string
gets out of scope (or its lifetime is
over by any other means), then the
reference counter is decreased,
and the long string itself is possibly
destroyed (that is, the memory is
deallocated again). And guess
what happens when we assign the
result of CaptionMaker to Str2
again? The previous value gets
lost, that’s what. Meaning that the
previous long string assigned to
Str2 must be removed, cleaned-up
and then de-allocated. Which of
course takes time. And hence the
effect that long strings appear to be
slower than short strings.

Is this surprising? Well, I’m
rather glad if it is, because some
day you will encounter such a case
of unexpected performance hit in
the real world.

Delphi 4 Versus Delphi 5
And if you think the previous
eye-opener was surprising, check
this one. If you recompile the same
application with Delphi 4 again and
run it, you’ll find that the results
are always at least 10% better
using Delphi 4. And no matter what
or how you try, long strings in
Delphi 4 are faster than in Delphi 5.
The results are as follows:

1: 30K
2: 40K
3: 43K
4: 77K
5: 43K

What’s the explanation? Well, it
turns out that the reference coun-
ter of long strings wasn’t really
completely thread-safe in Delphi 4
and earlier. It was only thread-safe
when writing, but not when read-
ing. To fix that, from Delphi 5 on, all
access to the reference counter of
a long string requires an actual
LOCK statement. The effect may
vary from machine to machine, but
at least speed won’t go up
(although thread-safety will),
that’s for sure!

Further Delphi 5 Issues
What is even more worrying is
that, according to several sources,
short strings are turned into long
strings (behind the scenes) in
Delphi 5 prior to many string
operations. This affects the effi-
ciency of older applications, and is

➤ Listing 3
Reps := 0;
EndTime := TimeGetTime + 100;
repeat
Inc(Reps);
Str2 := CaptionMaker1(Str);

until TimeGetTime > EndTime;
writeln('1: ',Reps);

➤ Listing 4

procedure ReadFile(const FileName: ShortString): String;
var
f: Text;
Line,Str: String;

begin
Str := '';
Assign(f,FileName);
Reset(f);
while not eof(f) do begin
readln(f,Line);
Str := Str + #13#10 + Line { re-allocate Str when needed }

end;
Close(f);
Result := Str

end;

22 The Delphi Magazine Issue 61

something that can best be seen if
you recompile your application
using Delphi 4 and Delphi 5 and
compare the timings.

Note that at BorCon 2000 in San
Diego it was made clear that short
strings will not be removed from
Delphi. In fact, we’ve even heard
that they will still be in Kylix.
Regardless of that, I have no idea
what the reasoning is behind this
conversion of short strings to long
strings. It’s not always done and
the CaptionMaker didn’t suffer from
it, but when in doubt, just compare
the Delphi 4 and Delphi 5 timings to
be sure.

HyperString
If you’re really concerned with the
speed of AniStrings, then you
should consider working with
HyperString, a freeware library by
EFD Systems, see http://efd.home.
mindspring.com/hyperstr.htm for
more details. HyperString contains
a few hundred routines to work
with AnsiStrings. There are
freeware DCUs for Delphi 3, Delphi
4 and Delphi 5, and you can buy a
source code license for $59 if you
want. I can recommend this library
if you’re concerned about string
performance.

Wide Strings
A wide string is a long string that is
made of special characters:
WideChars. While all the strings we
have covered so far were made up
of single byte characters, Windows
has some great support for
multi-byte characters, which was
not found in Delphi until the sup-
port for so-called wide strings
became available.

First a warning: WideStrings are
based on the Unicode implementa-
tion of your operating system
(which isn’t supported by Win95
for example). As a result, some of
the code that will follow might not
work on your machine exactly the
way it works on mine. It’s the idea
that counts, of course.

Compared to LongStrings, Wide-
Strings have some serious draw-
backs. Apart from the fact that they
are twice as big (every character is
a WideChar), they are also slower,
because WideStrings are not

reference counted. How would that
affect the CaptionMaker routine?
Well, the results are as follows
(they are virtually the same using
Delphi 4 or 5, by the way):

1: 20K
2: 24K
3: 33K
4: 73K
5: 45K

WideStrings indeed seem to be
slower than long strings. They still
need to be cleaned up, and are a bit
bigger, so there is more to be
cleaned up at that.

Note that for WideString compat-
ibility (or rather, WideChar verus
Char incompatibility) I even had to
rewrite the loop to make sure that
we checked the Ord of each charac-
ter against 32, and assign the
WideChar value of UpCase of the Chr
of Ord of the WideChar to the
WideChar again. Oh well, here’s the
code (like I said earlier, it would be
nice if Delphi had some more
WideString and WideChar support
inside):

for i:=1 to Length(Str) do
if (i = 1) or
(Ord(Str[i-1]) = 32) then
Str[i] := WideChar(UpCase(
Chr(Ord(Str[i]))));

Delphi does contain three func-
tions that support conversion of
null-terminated WideChar strings to
regular AnsiString or WideString
variables. These are WideCharTo-
String, WideCharLenToString and
StringToWideChar.

WideString And COM
Would we need WideStrings in
Delphi even if we never (think) we
need Unicode support? Well, if you
want to use COM as a way of
application communication, then
you should know that COM-based
strings are, indeed, WideStrings. Or
BSTRas they say in the COM world.

An AnsiString may even be con-
verted behind the scenes into a
WideString for you, which is even
less efficient that using a
WideString directly from the start.

ResourceStrings
Yet another string type is called
the ResourceString. This is only a
type definition to help you declare
string constants that will be placed
in a resource file (for easy
translation or localisation of your
application). As with any string
constant, resource strings are in
fact short strings and limited to
255 characters in length.

And in case you missed the
implication: any constant string is
in fact a short string expression. So
the definition

const
Message = ‘Hello, world!’;

declares a string constant, that can
only be changed by recompiling
the application, whereas

resourcestring
Message = ‘Hello, world!’;

declares a resource string that
ends up in the string table linked
with your executable (which you

Using Unicode
Windows NT and Windows 2000 support diverse languages and character
sets using Unicode, a 16-bit character set that unifies Asian, Arabic, and many
other character sets in a single standard. Delphi has some support for
Unicode, but the VCL must maintain compatibility with Windows 95, which
does not support Unicode. In fact, supporting Unicode controls seems to be
an area that Borland overlooked entirely.

If you must use Unicode controls in your application, you need to write
your own. Delphi gives you full access to the Windows API, but it lacks
design-time support for WideStrings. The Object Inspector, for example,
does not understand Unicode. The component streaming system does not
support Unicode, either. Ray Lischner is preparing an article for the October
2000 issue that will show you how to overcome these limitations and use
Unicode strings at design-time.

September 2000 The Delphi Magazine 23

can edit and modify by any self-respecting 32-bit Win-
dows resource editor such as Resource Workshop).

What, Where And When?
So, which string type should you use, where and when
and why? By default, I would use normal Chars (8-bit
AnsiChar) and normal Strings (the long string type, also
known as AnsiString).

When using old-style record types that contain
string fields, you have no choice but to use
ShortStrings. But, apart from that, I would seldom fall
back to short strings these days (especially since
Delphi 5 will make sure they’ll often be turned into long
strings before working with them anyway).

Whenever I define some string constants that may
need to be translated, I go for the ResourceString key-
word. This is much easier than modifying the strings
and recompiling the application (it even prevents the
burden of having to maintain an external windows
string resource file, since it just creates one for you
behind the scenes).

Most, but not all, of the functions that make up the
Windows API use C-type null-terminated strings, so
there’s PChar for that. And for plain communication
with other environments (without using COM, that is)
you should also rely on simple PChars.

COM uses a type called BSTR which is a Unicode wide
string, compatible with the WideString type of Delphi.
So, when using COM and interfaces (where you expect
to communicate with other environments) you may
wish to investigate WideStrings instead.

Final Access Violation
Long and wide strings are like dynamic arrays: Delphi
will check the index (subscript) and, if it’s out of range,
you’ll get a range check error (when compiling with
$R+, that is). However, an empty long or wide string is
represented internally by a nil pointer, and that will
always result in an access violation.

Bob Swart (aka Dr.Bob, www.drbob42.com) is an @
Consultant for TAS Advanced Technologies, freelance
technical author and Delphi Trainer who has spoken
at the Inprise/Borland Conferences since 1993.

	Typical Characters
	Null Termination
	Short Strings
	Short CaptionMaker
	Timings
	Long Strings
	Reference Counted
	Long CaptionMaker
	Delphi 4 Versus Delphi 5
	Further Delphi 5 Issues
	HyperString
	Wide Strings
	WideString And COM
	ResourceStrings
	Using Unicode
	What, Where And When?
	Final Access Violation

